E. Afanas'eva, A. Golberg, (2023), Absolute continuity in higher dimensions, Fields Inst. Commun., 87, Springer, Cham.
E. Afanas'eva, A. Golberg, (2022), Topological mappings of finite area distortion, Anal. Math. Phys. 12.
A. Golberg, R. Salimov, (2020), Nonlinear Beltrami equation, Complex Var. Elliptic Equ. 65.
E. Afanas'eva, A. Golberg, (2020), Finitely bi-Lipschitz homeomorphisms between Finsler manifolds, Anal. Math. Phys. 10.
A. Golberg, T. Sugawa, M. Vuorinen, (2020), Teichmüller's theorem in higher dimensions and its applications, Comput. Methods Funct. Theory 20 .
A. Golberg, (2018), Extremal bounds of Teichmüller-Wittich-Belinskiĭ type for planar quasiregular mappings, Fields Inst. Commun., 81, Springer, New York.
A. Golberg, E. Sevost'yanov, (2018), Absolute continuity on paths of spatial open discrete mappings, Anal. Math. Phys. 8.
A. Golberg, R. Salimov, (2017), Hölder continuity of homeomorphisms with controlled growth of their spherical means, Complex Anal. Oper. Theory 11.
A. Golberg, R. Salimov, E. Sevost'yanov, (2016), Poletskiĭ type inequality for mappings from the Orlicz-Sobolev classes, Complex Anal. Oper. Theory 10 .
A. Golberg, R. Salimov, E. Sevost'yanov, (2015), Singularities of discrete open mappings with controlled p -module, J. Anal. Math. 127.
A. Golberg, (2014), Quasiisometry from different points of view, J. Math. Sci. (N.Y.) 196.
A. Golberg, (2011), Homeomorphisms with integrally restricted moduli, Contemp. Math., 553, American Mathematical Society, Providence, RI.
A. Golberg, (2010), Directional dilatations in space, Complex Var. Elliptic Equ. 55.
V. Ya. Gutlyanskiĭ, A. Golberg, (2009), On Lipschitz continuity of quasiconformal mappings in space, J. Anal. Math. 109.
A. Golberg, (2006), On generalization of Menshoff's theorem, Israel J. Math. 156.
A. Golberg, (2006), Geometric characterization of locally univalent analytic functions, and a generalization, Rev. Roumaine Math. Pures Appl. 51.
A. Golberg, (2005), Homeomorphisms with finite mean dilatations, Contemp. Math., 382, American Mathematical Society, Providence, RI.