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PRELAB EXERCISE

1. Using Matlab, draw a graph of PLR as a function of the normalized fre-
quency of a Chebyshev LPF, 3dB equal ripple, N = 1, 3, 5, 7 (see Figure 3).
2. Compare Butterworth and Chebyshev LPF with 1dB equal ripple, N =

3, fc = 1GHz, Zin = Zout = 50Ω :

1. Calculate the elements values.

2. Calculate the transfer function of each filter.

3. Draw the graph of the transfer function of each filter (only magnitude)
up to 2GHz.

4. Calculate the stopband attenuation (dB/octave) of each filter.
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1. BACKGROUND THEORY

A filter is a two port network used to control the frequency response at a
certain point in a system by providing transmission within the passband of the
filter and attenuation in the stopband of the filter. The basic filter types are
low-pass, high-pass, bandpass and band-reject (notch) filters.

1.1 Group Delay

The group delay is the derivative of the transmission phase with respect to the
angular frequency and it is a measure of the distortion in the signal introduced
by phase differences for different frequencies. It is defined as:

τ g(ω) = −
dφ

dω

Where φ is the transmission phase in radians and ω is the angular frequency in
radians per second. From this definition, we can conclude that a linear phase
(in respect to frequency) is represented by a constant group delay. The group
delay is the slope of the graph of S21 (phase) as a function of frequency.

1.2 Passive Filters

A passive filter is one which can be made of inductors and capacitors. In the
Butterworth and Chebyshev cases, the total number of capacitors and induc-
tors is equal to the highest power of frequency in the frequency polynomial,
and gives us the order of the filter. In the Elliptic filter case, the number of
capacitors indicates the order of the filter. The lumped elements values have
been computed and tabulated for each filter type for the normalized frequency
ωc = 1

rad
sec
and source and load impedances of Zin = ZLoad = 1Ω.

1.3 Insertion Loss Method

Ideal filter would have no insertion loss and a linear phase response in the
passband, an infinite attenuation in the stopband and matched at the input and
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output. It is impossible to practically built such a filter, therefore compromises
must be made. Design by insertion loss method, allows a high degree of control
over the filter width, stopband slope and phase characteristic. Depend on the
application, the necessary trade off design can be evaluated.
The filter response is defined by the Power Loss Ratio (PLR) method:

PLR(ω) =
Power available from source

Power delivered to load
=

Pinc

PTrns.
=

1

1− |Γ(ω)|2
(1.1)

Where Γ(ω) is the reflection coefficient looking into the input of the filter
network. Pay attention that the PLR can be described as 1/ |S12|2 , under the
assumption that the filter input and output are matched. If |Γ(ω)|2 is an even
function of ω, it can be expressed as:

|Γ(ω)|2 = M(ω2)

M(ω2) +N(ω2)
(1.2)

Where M and N are real polynomials of the order 2. Substituted equation
(1.2) in equation (1.1) yields:

PLR = 1 +
M(ω2)

N(ω2)
(1.3)

1.4 Butterworth Filter Theory

Another name of the Butterworth Filter is ’maximally flat magnitude’ filter.
Butterworth has a maximally flat (has no ripples) filter response. Butterworth
filter transfer function contains only poles. The Butterworth filter has a more
linear phase response in the passband than the Chebyshev and Elliptic filters.
The PLR of the low pass filter is specified by:

PLR = 1 + k2
µ
ω

ωc

¶2N
(1.4)

Where N is the order of the filter.
ωc - The cutoff frequency of the filter.
At frequency ω = ωc, which is at the edge of the passband, the PLR is equal

to 1 + k2. If k = 1, this point is the ’−3dB point’. Figure 1 shows the PLR
of a Butterworth LPF as a function of the normalized frequency for different
orders.
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Figure 1 - Butterworth PLR. Blue line - Order N=1. Pink line - Order N=2.
Yellow line - Order N=3.

It can be seen from Figure 1 that for higher orders, the attenuation out-
side the passband is higher, which means that the filter frequency response is
sharper.

The attenuation outside of the passband is increasing monotonically with
frequency for ω > ωc . The rate of the increasing of the insertion loss out side
the passband is 20N dB/decade.
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Figure 2 - Butterworth low pass filter, theoretical response for N=1 (upper
blue line), N=2 (midle pink line), N=3 (lower red line).

Table 1 contains the elements values for Butterworth LPF for different

orders:

N g1 g2 g3 g4 g5 g6 g7 g8
1 2.0000 1.0000
2 1.4142 1.4142 1.0000
3 1.0000 2.0000 1.0000 1.0000
4 0.7654 1.8478 1.8478 0.7654 1.0000
5 0.6180 1.6180 2.0000 1.6180 0.6180 1.0000
6 0.5176 1.4142 1.9318 1.9318 1.4142 0.5176 1.0000
7 0.4450 1.2470 1.8019 2.0000 1.8019 1.2470 0.4450 1.0000

Table-1: Elements values for Butterworth LPF.

1.5 Chebyshev Filter Theory

Chebyshev filters have a narrower transition region between the passband and
the stopband and more passband ripple (type I) or stopband ripple (type II)
than the Butterworth filters.
Chebyshev poles can be derived by moving the poles of the normalized

Butterworth low-pass transfer function to the right, by multiplying the real
parts of the poles positions by a constant Kr and the imaginary parts by a
constant Kj, where both K0s are smaller than 1. The poles would lie on an
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ellipse of the unit circle. That means that like Butterworth filters, Chebyshev
filters contain only poles. However, while the poles of the Butterworth filter
lie on a circle in the s-plane, those of the Chebyshev filter lie on an ellipse.
The Chebyshev phase response exhibits more linearity than the Elliptic one
and less linearity than the Butterworth one. The insertion loss of an N order
Chebychev LPF is:

PLR = 1 + k2T 2N

µ
ω

ωc

¶
(1.5)

Where

TN(x) = xN −
µ
N

2

¶
xN−2

¡
1− x2

¢
+

µ
N

4

¶
xN−4

¡
1− x2

¢2 − · · · (1.6)

TN(x) is the Nth order Chebyshev polynom where x = ω/ωc. Chebyshev
polynom result in a sharp sloop of the filter response outside of the passband
and a ripple of 1+k2of the amplitude.The polynom TN (x) is oscillating between
±1 for |x| ≤ 1 (the passband region). The amplitude of the ripple is determined
by k2. Like in the case of the Butterworth filter, the response for the PLR is
increasing by at least 20NdB/decade. Figure 3 shows the insertion loss of a
Chebychev 3dB ripple LPF for different orders:

Figure 3 - Chebyshev Low Pass Filter response for 3 dB ripple, orders 1 to 7.

Figure 4 shows the PLR of Chebychev and Butterworth filters for N=3:
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Figure 4 - Butterworth and Chebyshev PLR for N=3.

1.5.1 Chebyshev LPF Implementation

For a Chebyshev LPF with a normalized cutoff frequency ωc = 1 and a nor-
malized unity source impedance, we will derive the normalized elements values
of the inductor, L, and capacitor, C. Figure 4 shows the structure of a second
order (N = 2) Chebyshev LPF.

P_1Tone
PORT1

R
R1

C
C2

L
L1

Figure 4 - Low pass filter structure for N=2.
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The PLR is:

PLR = 1 + k2T 2N(ω) =
1

1− |Γ(ω)|2
(1.7)

In order to find Γ(ω), we have to calculate Zin (see Figure 4):

Zin = R|| 1
jωC

+ jωL =
R 1

jωC

R+ 1
jωC

+ jωL = jωL+
R(1− jRωC)

1 + ω2R2C2

Where

Γ(ω) =
ZL − Z0
ZL + Z0

(1.8)

By inserting equation (1.8) in equation (1.7), the PLR becomes:

PLR =
1

1−
¯̄̄
Zin−1
Zin+1

¯̄̄2 = 1

1−
³
Zin−1
Zin+1

´³
Z∗in−1
Z∗in+1

´ = |Zin + 1|2

2 (Zin + Z∗in)
(1.9)

Taking the real and imaginary parts of equation (1.9), we get:

Zin + Z∗in =
2R

1 + ω2R2C2
(1.10)

|Zin + 1|2 =

µ
R

1 + ω2R2C2
+ 1

¶2
+

µ
ωL− ωR2C

1 + ω2R2C2

¶2

Therefore:

PLR = 1 +
1

4R

£
(1−R)2 + ω2

¡
R2C2 + L2 − 2LCR2

¢
+ L2R2C2ω4

¤
(1.11)

By recalling that the second order of a chebyshev polynom is T2(x) =
2x2 − 1, we get:

PLR = 1 + k2T 22 (ω) = 1 + k2
¡
4ω4 − 4ω2 + 1

¢
(1.12)

By equating (1.11) and (1.12) we get:

1+k2
¡
4ω4 − 4ω2 + 1

¢
= 1+

1

4R

£
(1−R)2 + ω2

¡
R2C2 + L2 − 2LCR2

¢
+ L2R2C2ω4

¤
(1.13)

If the ripple is known, one can solve the equation at ω = 0 for R and get:

R = 2k2 + 1 + 2k
p
(k2 + k) (1.14)

Equating the coefficients of ω4 and ω2 yield:

CHEBYSHEV FILTER THEORY 13



4k2 =
1

4R
L2C2R2 (1.15)

−4k2 =
1

4R

¡
C2R2 + L2 − 2LCR2

¢
One can use the equations to obtain the values of the capacitor and inductor

of the second order Chebyshev LPF. Thus constructing the famous table of
Matthaei, Young and Jones for Chebychev 3dB ripple in the passband. The
normalized elements values are given in Table-2:

N g1 g2 g3 g4 g5 g6 g7 g8
1 1.9953 1.00
2 3.1013 0.5339 5.8095
3 3.3487 0.7117 3.3487 1
4 3.4389 0.7483 4.3471 0.5920 5.8095
5 3.4817 0.7618 4.5381 0.7618 3.4817 1
6 3.5045 0.7685 4.6061 0.7929 4.4641 0.6033 5.8095
7 3.5182 0.7723 4.6386 0.8039 4.6386 0.7723 3.5182 1
Table-2: Elements values for 3dB equal ripple Chebychev LPF.

1.6 Elliptic Filter Theory

Another name for the Elliptic Filter is ’Cauer’ filter. Compared with But-
terworth and Chebyshev filters, Elliptic filters have the most rapid transition
(narrow transition band). However, this does not come without a price. Ellip-
tic filters have a ripple in both the passband and stopband. This is the result
of a pole-zero configuration which consists of both poles and zeros. An El-
liptic filter is notorious for introducing large phase distortions, especially near
the edge of the pass-band where the sharp amplitude characteristic implies a
strongly non-linear phase characteristic.
The PLR of the low pass filter is specified by:

PLR = 1 + k2Zn2
µ
ω

ωc

¶2N
(1.16)

Where Zn(x) is the Nth order Elliptic function.
For an odd order, m = (N − 1)/2 and Zn(x) is:

Zn(x) =
x(a22 − x2)(a24 − x2) · · · (a2m − x2)

(1− a22x
2)(1− a24x

2) · · · (1− a2mx
2)

For an even order, m = N/2 and Zn(x) is:

Zn(x) =
(a22 − x2)(a24 − x2) · · · (a2m − x2)

(1− a22x
2)(1− a24x

2) · · · (1− a2mx
2)
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The zeros of Zn are a2, a4, ..., am whereas the poles are 1
a2
, 1
a4
, ..., 1

am
. The

reciprocal relationship between poles and zeros of Zn results in equiripple be-
havior in both the stopband and the passband.

Elliptic function filters have been extensively tabulated by Saal and Zverev.
A sample section table is presented in Table 3.

θ Amin C1 = C3 C2 L2
25 31.47 1.0933 0.1345 1.0199
26 30.41 1.0855 0.1466 1.009
27 29.39 1.0773 0.1593 0.9976
28 28.41 1.0689 0.1728 0.9859
29 27.45 1.0602 0.1869 0.9738
30 26.53 1.0512 0.2019 0.9612
Table-3: Section table for elements values

for an Elliptic LPF.
Where θ is calculated by:

θ = sin−1
³ωc

ω

´
and Amin is the minimum stopband attenuation (see Figure 5).

Figure 5 - Magnitude response of a third order Elliptic LPF.

A prototype of a third order Elliptic LPF is shown in Figure 6.

 
L
L2

C
C2C

C1

C
C3

P_AC
PORT1

Freq=freq
Pac=polar(dbmtow (0),0)
Z=50 Ohm
Num=1

Term
Term2

Z=50 Ohm
Num=2

Figure 6 - A prototype of a third order Elliptic LPF.
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1.7 Low Pass Filter Design

We will begin with a design of a low pass filter and then transform the design
to another type of filter. We will use the elements from the table of each filter
type.

1.7.1 Impedance and Frequency Scaling

As indicated before, the elements from the tables of the LPF are normalized
by frequency and impedance. For different frequency and impedance, elements
can be obtained by impedance and frequency transformation:

L0k =
LkZ0
ωc

(1.17)

C 0
k =

Ck

Z0ωc

Where Lk and Ck are the relevant normalized elements values from the
tables.

1.8 High Pass Filter Transformation

We can design a HPF by first designing a LPF (see Figure 7) then replacing
the capacitors by inductors and the inductors by capacitors (see Figure 8).
By scaling the elements from the tables by equation (1.17), we can find the

capacitor and inductor values.

1.8.1 Example

Design a HPF, type Chebychev 3 dB equal ripple, with a cutoff frequency of
100 MHz, input and output impedance of 50Ω, and at least 25 dB insertion
loss at 50MHz. Calculate the values of the elements and plot the frequency
response of the filter at 300 MHz.
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1.8.2 Solution

According to Figure 5, we have to choose N=3. The structure if a LPF Cheby-
chev 3 dB equal ripple is shown in Figure 7.

Term
Term2
Z=50 Ohm

P_1Tone
PORT1

L
L2

C
C3

C
C1

Figure 7 - A prototype of a Chebychev LPF 3 dB equal ripple response with
N=3.

By replacing the capacitors by inductors and the inductors by capacitors
we can get the structure of a HPF, as shown in Figure 8.

C
C2

L
L1

L
L3 R

R1
P_1Tone
PORT1

Figure 8 - High Pass Filter prototype.

Table-2 gives the prototype elements values as:

• g1 = 3.3487

• g2 = 0.7117

• g3 = 3.3487

• g4 = 1

Using equation (1.16), the elements values of the prototype are:

C 0
1 = C 0

3 =
g1

Z0ωc
=

3.3487

50 ∗ 2π ∗ 108 = 1. 066× 10
−10 (1.18)

L02 =
g2Z0
ωc

=
0.7117 ∗ 50
2π ∗ 108 = 5. 664× 10−8

R0ut = R4 = g4Z0 = 1 ∗ 50 = 50Ω
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The frequency response of the filter using ADS is shown on Figure 9.
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Figure 9 - HPF Chebeyshev 3 dB equal ripple response.

1.9 Band Pass Filter Transformation

In similar of designing a LPF, we can design a Band Pass Filter.

1.9.1 Impedance and Frequency Scaling

The parallel components values are:

L0k =
∆Z0
ω0Ck

(1.19)

C 0
k =

Ck

ω0∆Z0

The series components values are:

L0k =
LkZ0
ω0∆

(1.20)

C 0
k =

∆

ω0LkZ0
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Where Ck and Lk are the elements values taken from Table-1.
∆ is the desired bandwidth of the filter, it is measured in % and it is

calculated by:

∆ =
ω2 − ω1

ω0
(1.21)

Where ω2 and ω1 are the ’−3dB points’ of the filter. The prototype of a
BPF for N=3 is shown in Figure 10.
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Figure 10 - Band Pass Filter prototype for N=3.ω0 = 100MHz,∆ = 20%.

The frequency response using a simulation software is shown in Figure 11.
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Figure 11 - The frequency response of the BPF prototype for N=3,
ω0 = 100MHz,∆ = 20%.
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2. EXPERIMENT PROCEDURE

2.1 Required Equipment

1. Network analyzer HP − 8714B.
2. High quality 50Ω coaxial cable.
3. Microstrip Chebyshev 3dB equal ripple LPF, fc = 100MHz, order N=3.
4. Microstrip Butterworth BPF, f0 = 10MHz, order N=3.
5. Microstrip Elliptic LPF, fc = 1.9MHz, order N=3.
6. Mini-Circuits Elliptic LPF, fc = 1.9MHz, order N=3.
7. Simulation software ADS.

2.2 Chebyshev 3dB equal ripple LPF Design

1. Design a Chebyshev 3dB equal ripple LPF, fc = 5.66 MHz and N = 3.
Calculate the values of the capacitors and inductors using the proper table,
assume that Zin = ZLoad = 50Ω.

2.2.1 Simulation

2. Verify your design by simulation using ADS software, as shown in Figure 1.

 

L
L2 C

C3
C
C1

P_AC
PORT1

Freq=freq
Pac=polar(dbmtow(0),0)
Z=50 Ohm
Num=1

S_Param
SP1

Step=0.5 MHz
Stop=10 MHz
Start=300 kHz

S-PARAMETERS

Term
Term2

Z=50 Ohm
Num=2

Figure 1 - Chebyshev 3dB equal ripple LPF for N=3 simulation.
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Drew the graphs of S21(Magnitude and phase), S11(Magnitude only), S22
(Magnitude only) of the filter in the frequency range of 300 kHz - 10 MHz.
Save the data on magnetic media.
3. Examine the effects of a real microstrip filter by adding microstrip trans-

mission lines between the elements, add impedance to the inductors and use
the nominal values of the capacitors and inductors, as shown in Figure 2.

 

MLIN
TL2

L=0.7 cm
W=3 mm
Subst="MSub1"

MLIN
TL6
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W=3 mm
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C
C3
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L
L2

R=1.75 Ohm
L=1 uH

MLIN
TL4

L=0.5 cm
W=3 mm
Subst="MSub1"

C
C1
C=1.8 nF

S_Param
SP1

Step=1.0 MHz
Stop=10 MHz
Start=300 kHz

S-PARAMETERS

MLIN
TL1

L=0.7 cm
W=3 mm
Subst="MSub1"

MLIN
TL8

L=0.6 cm
W=3 mm
Subst="MSub1"

MLIN
TL7

L=0.9 cm
W=3 mm
Subst="MSub1"

P_AC
PORT1

Freq=freq
Pac=polar(dbmtow(0),0)
Z=50 Ohm
Num=1

MSUB
MSub1

Rough=0 mm
TanD=0.01
T=17 um
Hu=1.0e+033 mm
Cond=1.0E+50
Mur=1
Er=4.7
H=1.6 mm

MSub

Term
Term2

Z=50 Ohm
Num=2

Figure 2 - A more realistic Chebyshev 3dB equal ripple LPF for N=3
simulation.

Drew the graphs of S21 (Magnitude and phase), S11 (Magnitude only), S22
(Magnitude only) of each element. Save the data on magnetic media.

2.2.2 Measurement

4. Set the network analyzer to transmission measurement, set the frequency
range to 300kHz - 10MHz, connect a coxial cable between port 1 and port 2 of
the network analyzer and implement a transmission calibration.
5. Connect the microstrip Chebyshev LPF to the network analyzer with the

coaxial cable and measure S21 (Magnitude and phase), S11 (Magnitude only),
S22 (Magnitude only) of the filter. Save the data on magnetic media.

2.3 Butterworth BPF Design

1. Design a Butterworth (maximally flat) BPF, f0 = 24MHz and N = 3.
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The bandwidth is 20%. Calculate the values of the capacitors and inductors,
assume that Zin = ZLoad = 50Ω.

2.3.1 Simulation

2. Verify your design by simulation using ADS software, as shown in Figure 3.

 

C
C3

L
L3

C
C2

L
L2

C
C1

L
L1

S_Param
SP1

Step=1.0 MHz
Stop=30 MHz
Start=15 MHz

S-PARAMETERS

Term
Term2

Z=50 Ohm
Num=2

P_AC
PORT1

Freq=freq
Pac=polar(dbmtow(0),0)
Z=50 Ohm
Num=1

Figure 3 - Butterworth BPF for N=3 simulation.

Draw the graphs of S21(Magnitude and phase), S11(Magnitude only), S22
(Magnitude only) of the filter in the frequency range of 15 MHz - 30MHz. Save
the data on magnetic media.

3. Examine the effects of a real microstrip filter by adding microstrip trans-
mission lines between the elements, add impedance to the inductors and use
the nominal values of the capacitors and inductors, as shown in Figure 4.
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MSub

Figure 4 - A more realistic Butterworth BPF for N=3 simulation.

4. Drew the graph of the amplitude response (S21 magnitude) of the series
LC and parallel LC separately and compare it to the amplitude response of all
the elements connected together.

5. Simulate the system as indicated in Figure 5.

 

L P F _ B utte rw o rth
L P F 1

As to p=2 0  dB
F s to p=1 5  M Hz
Apas s =1  dB
F pas s =1 .9  M Hz

Tran
Tran1

M a xTime S te p=10  ns e c
S topTime =3 0  use c

T R AN S IE N T

Vf_ S qua re
S R C 1

Harmo nic s =5 0
W e ight=no
D e la y=0  ns e c
F a ll=0 .1  ns e c
R is e =0 .1  nse c
F re q=1 00  kHz
Vdc =0  V
Vpe a k=10 0  mV

R
R 1
R =5 0  O hm

Figure 5 - Simulation of a square wave through a Butterworth LPF in the
time domain.

Drew the graph of the current as a function of time.
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2.3.2 Measurement

5. Connect the microstrip Butterworth BPF to the network analyzer with a
coaxial cable and measure S21 (Magnitude and phase), S11(Magnitude only),
S22 (Magnitude only) of the filter in the frequency range to 15 MHz - 30 MHz.
Save the data on magnetic media.

2.4 Elliptic LPF Design

1. Design an elliptic LPF, f0 = 1.9MHz, N = 3 and at least 28 dB stopband
attenuation at 4.5 MHz. Calculate the values of the capacitors and inductors,
assume that Zin = ZLoad = 50Ω.

2.4.1 Simulation

2. Verify your design by simulation using ADS software, as shown in Figure 6.

 

C
C3

L
L2

C
C4

C
C1

S_Param
SP1

Step=0.5 MHz
Stop=10 MHz
Start=300 kHz

S-PARAMETERS

Term
Term2

Z=50 Ohm
Num=2

P_AC
PORT1

Freq=freq
Pac=polar(dbmtow(0),0)
Z=50 Ohm
Num=1

Figure 6 - Elliptic LPF for N=3 simulation.

Draw the graphs of S21(Magnitude, and phase), S11 (Magnitude only), S22
(Magnitude only) of the filter in the frequency range of 300 kHz - 10 MHz.
Save the data on magnetic media.
3. Examine the effects of a real microstrip filter by adding microstrip trans-

mission lines between the elements, add impedance to the inductors and use
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the nominal values of the capacitors and inductors, as shown in Figure 7.

 

L
L2
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TanD=0.01
T=17 um
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Er=4.7
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C
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Figure 7 - A more realistic Elliptic LPF for N=3 simulation.

4. Simulate the system as indicated in Figure 8.

 

LPF_Elliptic
LPF1

Astop=20 dB
Fstop=15 MHz
Ripple=1 dB
Fpass=1.9 MHz

Tran
Tran1

MaxTimeStep=10 nsec
StopTime=30 usec

TRANSIENT

Vf_Square
SRC1

Harmonics=50
Weight=no
Delay=0 nsec
Fall=0.1 nsec
Rise=0.1 nsec
Freq=100 kHz
Vdc=0 V
Vpeak=100 mV

R
R1
R=50 Ohm

Figure 8 - Simulation of a square wave through an Elliptic LPF in the time
domain.

Drew the graph of the current as a function of time. Compare this graph to the
graph you received in paragraph 4 from the ’Butterworth BPF Design’ section
and explain why the wave is distorted.
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2.4.2 Measurement

4. Connect the microstrip LPF-1.9MHz to the network analyzer with a coax-
ial cable and measure S21 (Magnitude and phase), S11 (Magnitude only), S22
(Magnitude only) of the filter in the frequency range to 300 kHz - 10 MHz.
Save the data on magnetic media.
5. Exchange the microstrip LPF with the coaxial LPF (Mini-Circuits

BLP-1.9) and measure S21 (Magnitude and phase), S11 (Magnitude only), S22
(Magnitude only) of the filter. Save the data on magnetic media.
6. Compare the graphs from paragraph 5 to the graphs from paragraph 4.

2.5 Final Report

1. Compare your simulation results to your measurement results.
2. Using ADS, compare S21 (magnitude and phase), S11 and S22 (mag-

nitude only) of a LPF Chebyshev 3dB equal ripple to a Butterworth and an
Elliptic LPFs, order N = 3 and f0 = 100MHz (you can use the LPF_Elliptic,
LPF_Butterworth and LPF_Chebyshev components) in the frequency range
of 300KHz-300MHz.
3. Design a network which consists of three cascades RC LPF, f0 is equal

to 100MHz.
Draw the graphs of S21, S11 and S22 (magnitude only).
Compare the graphs from this exercise to the graphs from paragraph 2 of

’Final Report’.
4. Using ADS, Drew the graphs of S21 (magnitude only) of a Butterworth

LPF and HPF, N = 3 and f0 = 10MHz (you can use the LPF_Butterworth
and HPF_Butterworth components).
What is the relationship between these graphs and the graph of S21 (Magnitude

only) from the ’Butterworth BPF Design’ section of ’Experiment Procedure’?
5. Drew conclusions from the ’Experiment Procedure’ and ’Final Report’.
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