Sciences

Professor Amnon Fruchtman

Contact Info
room:
202/8
phone:03-5026617
email: fnfrucht@hit.ac.il

  • Research Interests
  • Education
  • Employment
  • Visiting positions, consulting
  • Honors
  • Grants
  • Service positions
  • Invited talks at international meetings
  • Publications

  • Research Interests
      Plasma physics: plasma sources for materials modification, electric propulsion for space vehicles, pulsed plasma devices.

    Education
    • 1974: B.Sc. Physics, Tel-Aviv University
    • 1978: M.Sc. Physics, Hebrew University of Jerusalem
    • 1984: Ph.D. Physics, Hebrew University of Jerusalem

    Employment
    • 2001 - present : H.I.T., Professor
    • 1996-2001: H.I.T., Associate Professor
    • 1993-1995: Weizmann Institute, Associate Professor
    • 1986-1993: Weizmann Institute, Scientist & Senior Scientist
    • 1983-1986: Courant Institute (NYU), Research Associate

    Visiting positions, consulting
    • Tokyo University of Agriculture and Technology, Japanese Society for the Promotion of Science - Fellow (Spring 2015)
    • Ecole Polytechnique, Visiting Scientist (Summer 2009)
    • Ecole Polytechnique, Visiting Scientist-Sabbatical (Summer 2004)
    • Princeton University, Visiting Scientist-Sabbatical (1994-1995)
    • Yale University, Research Student (Fall 1981)
    • Consulting: Omega-P (Connecticut), US Naval Research Laboratories, Maxwell Labs (San Diego), Soreq NRC, Weizmann Institute, Nova Measuring Systems


    Honors
    • Fellow, American Physical Society (1999)
    • The Louis and Ida Rich Career Development Chair - Weizmann Institute (1989-1995)
    • Chaim Weizmann Postdoctoral Fellowship Award (1983 - 1985)


    Grants
    • Israel Science Foundation (2016-): "Momentum delivery to plasma generated by electromagnetic waves".
    • NSF-BSF (2015-): "Equation of state for hydrodynamic compression in turbulent Z-pinch" (with Princeton and Weizmann)
    • Israel Science Foundation (2011-2015): "Imparting momentum to a plasma".
    • US - Israel Binational Science Foundation (2009-2014): "New effects in rotating plasma".
    • Israel Science Foundation (2007-2011): "Acceleration of an ionizing plasma".
    • Ministry of Environment (2003-2006): "Development of processes for the microelectronics industry with reduced global warming gas emission".
    • Ministry of Industry (2003-2006): "Development of a low power Hall thruster" (with Rafael, Soreq, and Technion).
    • Israel Space Agency (through Ministry of Science) (1999-2002): "Research into improved configurations of the Hall thruster".
    • Us-Israel Binational Science Foundation (1999-2002): "Novel configurations for the Hall thruster".
    • Israel Science Foundation (1999-2002): "Plasma acceleration for materials processing".
    • Quarter Micron consortium (1998-2000): "A high density plasma source for materials processing".
    • US Air Force Office of Scientific Research - AFOSR (1996-1999): "Scaling laws for the Hall thruster performance", with N. J. Fisch (through Princeton U.).

    Service positions
    • Chair of the 15th Israeli Conference on Plasma Science and Applications (H.I.T., 2013)
    • Chair of IPSTA, Israel Plasma Science and Technology Association (2005-2009)
    • Chair of the Ninth Israeli Conference on Plasma Science and Applications (Ein-Gedi, 2006)
    • Chair of the Sixth Israeli Conference on Plasma Science and Applications (H.I.T., 2003)
    • Member of the Electric Propulsion Technical Committee of the American Institute of Aeronautics and Astronautics (2002-2004)

    Invited talks at international meetings
    1. “The effects of diffraction, waveguide, and density non-uniformities on the FEL interaction”,
      10th Int’l. Free Electron Laser (FEL) Conference,
      Jerusalem, Israel, 1988.
    2. “Nonlinear skin phenomena in (almost) collisionless short- duration plasmas”,
      The Int’l. Sherwood Fusion Theory Conference,
      Santa Fe, New Mexico, USA, April 1992.
    3. “Magnetic field evolution, flux penetration and energy dissipation due to the Hall field in the plasma opening switch configuration”.
      The Institute of Electrical and Electronics Engineers (IEEE) Int’l. Conference on Plasma Science,
      Tampa, Florida, USA, June 1992.
    4. “Magnetic field penetration due to the Hall effect in (almost) collisionless plasmas”,
      34th Annual Meeting of the American Physical Society – Division of Plasma Physics (DPP),
      Seattle, Washington, USA, November 1992.
    5. “Notes on coherent gyrophase CRM (Wiggler-Free FEL)”,
      The Research Workshop on Cyclotron-Resonance Masers and Gyrotrons,
      Maale Hachamisha, Israel, May 1998.
    6. “Plasma propulsion for space applications”,
      Meeting of the American Physical Society,
      Long Beach, CA, USA, April 2000.
    7. “On the efficiency of several electric thruster configurations”,
      44th Annual Meeting of the American Physical Society – Division of Plasma Physics (DPP),
      Orlando, Florida, USA, November 2002.
    8. “Maximum theoretical efficiency of various concepts”,
      International Symposium on Energy Conversion Fundamentals,
      Istanbul, Turkey, June 2004.
    9. “Pressure balance of neutrals, plasma and fields in space and laboratory”,
      International Workshop on Frontiers of Plasma Science,
      The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy, August 2006.
    10. “Coupled Dynamics of Neutrals and Plasma”,
      34th International Conference on Plasma Science (ICOPS),
      Albuquerque, New Mexico, USA, June 2007.
    11. “The divergence of a supersonic plasma jet”,
      Third International Conference on Frontiers of Nonlinear Physics,
      Nizhny Novgorod, Russia, July 2007.
    12. “Neutral depletion and transport in low pressure plasmas”,
      28th International Conference on Phenomena in Ionized Gases (ICPIG),
      Prague, Czech Republic, July 2007.
    13. “Plasma thrusters and double layers”,
      The 9th International Workshop on the Interrelationship between Plasma Experiments in Laboratory and Space (IPELS),
      Palm Cove Resort, Cairns, Australia, August 2007.
    14. “Neutral depletion and transport in low temperature plasmas”,
      49th Annual Meeting of the American Physical Society – Division of Plasma Physics (DPP),
      Orlando, Florida, USA, November 2007.
    15. “The effect of neutral-gas depletion on the plasma density and momentum”,
      63rd Gaseous Electronics Conference (GEC),
      Paris, France, October 2010.
    16. “Magnetic field penetration and ion separation in a POS plasma”,
      IEEE Pulsed Power and Plasma Science (PPPS, ICOPS),
      San Francisco, California, USA, July 2013.
    17. “Increase of the electric force on plasma by ion-neutral collisions”,
      First International Middle East Plasma Science conference (IMEPS),
      Antalya, Turkey, April 2014.
    18. “Enhanced momentum delivery by electric force to an ion flux due to collisions of ions with neutrals”,
      67th Gaseous Electronics Conference (GEC),
      Raleigh, North Carolina, USA, November 2014.


    Publications
    1. A. Fruchtman and J. L. Hirshfield
      Degradation in gain for a free electron laser amplifier due to electron momentum spread.
      Int. J. Infrared Millimeter Waves 2, 905 (1981).
    2. P. Avivi, F. Dothan, A. Fruchtman, A. Ljudmirsky, and J. L. Hirshfield
      Orbit stability in free electron lasers.
      Int. J. Infrared Millimeter Waves 2, 1071 (1981).
    3. L. Friedland, A. Fruchtman, and Y. M. Kagan
      Low energy electron beam relaxation in gases in uniform electric field.
      J. Physics D15, 251 (1982).
    4. L. Friedland and A. Fruchtman
      Amplification on relativistic electron beams in combined helical and axial guide magnetic fields.
      Phys. Rev. A25, 2693 (1982).
    5. A. Fruchtman and L. Friedland
      Amplification of frequency upshifted radiation by cold relativistic guided electron beams.
      J. Appl. Phys. 53, 4011 (1982).
    6. A. Fruchtman and L. Friedland
      Theory of a non-wiggler collective free electron laser in uniform magnetic field.
      IEEE J. Quantum Electronics QE19, 327 (1983).
    7. A. Fruchtman
      Wiggler-free free electron waveguide laser in a uniform axial magnetic field: single particle treatment.
      J. Appl. Phys. 54, 4289 (1983).
    8. A. Fruchtman and L. Friedland
      Simplified small signal gain calculations in free electron lasers.
      Int. J. Infrared Millimeter Waves 5, 683 (1984).
    9. A. Fruchtman
      Electron heating by waves in the ion-cyclotron frequency range.
      Phys. Fluids 28, 2188 (1985).
    10. A. Fruchtman and H. Weitzner
      Fundamental ion cyclotron frequency heating in tokamaks.
      Phys. Fluids 29, 1620 (1986).
    11. A. Fruchtman
      Gain enhancement in a longitudinal magnetic wiggler by use of a coherently gyrophased beam.
      Phys. Fluids 29, 1695 (1986).
    12. A. Fruchtman, K. S. Riedel, H. Weitzner, and D. B. Batchelor
      kinetic full wave theory of strong spatial damping of electron cyclotron waves in nearly parallel stratified plasmas.
      Phys. Fluids 30, 115 (1987).
    13. H. Weitzner, A. Fruchtman, P. Amendt
      Cold relativistic helically symmetric steady flows.
      Phys. Fluids 30, 539 (1987).
    14. A. Fruchtman and W. F. Cummins
      Absorption of waves at the ion cyclotron frequency range by drifting electrons.
      Phys. Fluids 30, 1569 (1987).
    15. A. Fruchtman
      A thick beam free electron laser.
      Phys. Fluids 30, 2496 (1987).
    16. H. Weitzner and A. Fruchtman
      Electron beam equilibria with self-fields for a free electron laser with a planar wiggler.
      Phys. Fluids 31, 2340 (1988).
    17. A. Fruchtman
      Optical guiding in a sheet-beam free electron laser.
      Phys. Rev. A37, 2989 (1988).
    18. A. Fruchtman
      A comparative study of the gyrotron, the free electron laser and the wiggler-free free electron laser.
      Phys. Rev. A37, 4252 (1988).
    19. A. Fruchtman
      High density thick beam free electron laser.
      Phys. Rev. A37, 4259 (1988).
    20. A. Fruchtman and H. Weitzner
      Raman free electron laser with transverse density gradients.
      Phys. Rev. A39, 658 (1989).
    21. A. Fruchtman
      The lower-hybrid drift instability in a slab geometry.
      Phys. Fluids B1, 422 (1989).
    22. A. Bhattacharjee, S. Y. Cai, S. P. Chang, J. W. Dodd, A. Fruchtman, and T. C. Marshall
      Theory and observation of optical guiding in a free-electron laser.
      Phys. Rev. A40, 5081 (1989).
    23. A. Fruchtman
      Gain reduction in FELS due to diffraction losses.
      Nuclear Instruments and Methods in Physics A285, 122 (1989).
    24. I. Ben-Zvi, B. V. Elkonin, A. Fruchtman, J. S. Sokolowski, A. Gover, E. Jerby, H. Kleinman, B. Mandelbaum, A. Rosenberg, J. Shiloh, G. Hazak, and O. Shahal
      Status of the Rehovot EN tandem accelerator free electron laser.
      Nuclear Instruments and Methods in Physics A287, 93 (1990).
    25. A. Gover, E. Jerby, H. Kleinman, I. Ben-Zvi, B. V. Elkonin, A. Fruchtman, J.S. Sokolowski, B. Mandelbaum, A. Rosenberg, J. Shiloh, G. Hazak, and O. Shahal
      Development of a tandem electrostatic accelerator quasi-CW FEL.
      Nuclear Instruments and Methods in Physics A296, 720 (1990).
    26. A. Fruchtman
      Wave profile modification in the free-electron laser with and without a waveguide.
      IEEE Trans. on Plasma Sci. 18, 424 (1990).
    27. A. Fruchtman and Y. Maron
      Fast magnetic field penetration into plasmas due to the Hall field.
      Phys. Fluids B3, 1546 (1991).
    28. A. Fruchtman
      Penetration and expulsion of magnetic fields in plasmas due to the Hall field.
      Phys. Fluids B3, 1908 (1991).
    29. A. Fruchtman
      Power dissipation during rapid magnetization or demagnetization of plasmas.
      Phys. Rev. A 45, 3938 (1992).
    30. A. Fruchtman and K. Gomberoff
      Magnetic field penetration and electron heating in weakly nonuniform plasmas.
      Phys. Fluids B4, 117 (1992).
    31. A. Fruchtman and K. Gomberoff
      Evolution of a magnetic field and plasma pushing in the presence of a parallel magnetic field.
      Phys. Fluids B4, 363 (1992).
    32. K. Gomberoff and A. Fruchtman
      The effect of displacement current on whistler penetration of fast-rising magnetic field.
      Phys. Fluids B4, 375 (1992).
    33. A. Fruchtman
      The snow-plow in plasmas of nonuniform density.
      Phys. Fluids B4, 855 (1992).
    34. A. Fruchtman and H. R. Strauss
      Thermomagnetic instability in a magnetized plasma.
      Phys. Fluids B4, 1397 (1992).
    35. A. Fruchtman
      Deviations from the frozen-in law in the presence of small (but nonzero) resistivity.
      Phys. Fluids B4, 3446 (1992).
    36. A. Fruchtman
      The wiggler-free free electron laser - a single particle model.
      Phys. Fluids B4, 4101 (1992).
    37. A. Fruchtman and L. I. Rudakov
      Two dimensional fast penetration of a magnetic field into a homogeneous plasma.
      Phys. Rev. Lett. 69, 2070 (1992).
    38. R. Arad, R. E. H. Clark, G. Dadusc, G. Davara, R. E. Duvall, A. Fisher, V. Fisher, M. E. Foord, A. Fruchtman, L. Gregorian, Ya. Krasik, C. Litwin, Y. Maron, L. Perelmutter, M. Sarfaty, E. Sarid, S. Shkolnikova, R. Shpitalnik, L. Troyansky, and A. Weingarten
      Visible-light spectroscopy of pulsed-power plasmas.
      Rev. Scl. Instrum. 63, 5127 (1992).
    39. A. Fruchtman and H. R. Strauss
      Modification of short scalelength tearing modes by the Hall field.
      Phys. Fluids B5, 1408 (1993).
    40. A. Fruchtman and K. Gomberoff
      Magnetic field penetration due to the Hall field in (almost) collisionless plasmas.
      Phys. Fluids B5, 2371 (1993).
    41. K. Gomberoff and A. Fruchtman
      Fast magnetic field penetration into a cylindrical plasma of a nonuniform density.
      Phys. Fluids B5, 2841 (1993).
    42. R. E. Duvall, A. Fruchtman, Y. Maron, L. Perelmutter
      A model for energetic ion generation in an anode plasma.
      Phys. Fluids B5, 3393 (1993).
    43. K. Gomberoff and A. Fruchtman
      Fast decay of plasma return currents due to whistler waves.
      Phys. Plasmas 1, 2480 (1994).
    44. A. Fruchtman and L. I. Rudakov
      Different class of two-dimensional shocks in magnetized plasmas.
      Phys. Rev. E50, 2997 (1994).
    45. A. Shahadi, E. Jerby, M. Korol, R. Drori, M. Sheinin, V. Dikhtiar, V. Grinberg, I. Ruvinsky, M. Bensal, T. Harhel, Y. Baron, A. Fruchtman, V. L. Granatstein, and G. Bekefi
      Cyclotron resonance maser experiment in a non-dispersive waveguide.
      Nuclear Instruments and Methods in Phys. Res. A358, 143 (1995).
    46. A. Fruchtman, M. Benari, and A. E. Blaugrund
      On the conduction of a current in a plasma-filled diode.
      Phys. Plasmas 2, 1296 (1995).
    47. M. Sarfaty, Y. Maron, Ya. E. Krasik, A. Weingarten, R. Arad, R. Shpitalnik, A. Fruchtman, and S. Alexiou
      Spectroscopic investigations of the plasma behavior in a plasma opening switch experiment.
      Phys. Plasmas 2, 2122 (1995).
    48. M. Sarfaty, R. Shpitalnik, R. Arad, A. Weingarten, Ya. E. Krasik, A. Fruchtman, and Y. Maron
      Spectroscopic investigations of fast (ns) magnetic field penetration in a plasma.
      Phys. Plasmas 2, 2583 (1995).
    49. A. Fruchtman
      A vacuum sheath propagation along the cathode.
      Phys. Plasmas 3, 3111 (1996).
    50. E. Jerby, A. Shahadi, R. Drori, M. Korol, M. Einat, M. Shenin, V. Dikhtiar, V. Grinberg, M. Bensal, T. Harhel, Y. Baron, A. Fruchtman, V.L. Granatstein, and G. Bekefi
      Cyclotron resonance maser experiment in a non-dispersive waveguide.
      IEEE Trans. Plasma Sci. 24, 816 (1996).
    51. S. B. Swanekamp, J. M. Grossmann, A. Fruchtman, B. V. Oliver, and P.F. Ottinger
      PIC simulations of fast magnetic field penetration into plasmas due to the Hall electric field.
      Phys. Plasmas 3, 3556 (1996).
    52. A. Fruchtman, N. J. Fisch, and E. J. Valeo
      Relativistic effects in energy extraction from Alpha particles.
      Phys. Plasmas 4, 138 (1997).
    53. A. Fruchtman, A.A. Ivanov and A.S. Kingsep
      The energy balance in the plasma of a coaxial plasma opening switch.
      Phys. Plasmas 5, 1133 (1998).
    54. I.I. Beilis, A. Fruchtman, and Y. Maron
      A mechanism for ion acceleration near the anode of a magnetically insulated ion diode.
      IEEE Trans. Plasma Sci. 26, 995 (1998).
    55. J. Ashkenazy, A. Fruchtman, Y. Raitses, and N. J. Fisch
      Modelling the behavior of a Hall current plasma accelerator.
      Plasma Phys. and Controlled Fusion 41, A357 (1999).
    56. A. Fruchtman, J. M. Grossmann, S. B. Swanekamp, P. F. Ottinger
      Sheath propagation along the cathode of a plasma opening switch.
      IEEE Trans. Plasma Sci. 27, 1464 (1999).
    57. A. Weingarten, V.A. Bernshtam, A. Fruchtman, C. Grabowski, Ya. E. Krasik, and Y. Maron
      Study of the effects of the prefilled-plasma parameters on the operation of a short conduction plasma opening switch.
      IEEE Trans. on Plasma Sci. 27, 1596 (1999).
    58. A. Fruchtman and N. J. Fisch
      Variational principle for optimal accelerated neutralized flow.
      Phys. Plasmas 8, 56 (2001).
    59. A. Fruchtman, N. J. Fisch, and Y. Raitses
      Control of the electric-field profile in the Hall thruster.
      Phys. Plasmas 8, 1048 (2001).
    60. A. Weingarten, R. Arad, Y. Maron, and A. Fruchtman
      Ion separation due to magnetic field penetration into a multispecies plasma.
      Phys. Rev. Lett. 87, 115004 (2001).
    61. N. Chakrabarti, A. Fruchtman, R. Arad, and Y. Maron
      Ion dynamics in a two-ion-species plasma.
      Phys. Lett. A 297, 92, (2002).
    62. A. Cohen – Zur, A. Fruchtman, J. Ashkenazy, and A. Gany
      Analysis of the steady-state axial flow in the Hall thruster.
      Phys. Plasmas 9, 4363 (2002).
    63. R. Arad, K. Tsigutkin, Y. Maron, A. Fruchtman, and J. D. Huba
      Observation of faster-than-diffusion magnetic field penetration into a plasma.
      Phys. Plasmas 10, 112 (2003).
    64. A. Fruchtman
      Limits on the efficiency of several electric thruster configurations.
      Phys. Plasmas 10, 2100 (2003).
    65. R. Doron, R. Arad, K. Tsigutkin, D. Osin, A. Weingarten, A. Starobinets, V. A. Bernshtam, E. Stambulchik, Yu. V. Ralchenko, Y. Maron, A. Fruchtman, A. Fisher, J. D. Huba, and M. Roth
      Plasma dynamics in pulsed strong magnetic fields.
      Phys. Plasmas 11, 2411 (2004).
    66. R. Arad, K. Tsigutkin, Y. Maron, and A. Fruchtman
      Investigation of the ion dynamics in a multispecies plasma under pulsed magnetic fields.
      Phys. Plasmas 11, 4515 (2004).
    67. D. Osin, R. Doron, R. Arad, K. Tsigutkin, A. Starobinets, V. Bernshtam, A. Fisher, A. Fruchtman, Y. Maron, and A. Tauschwitz
      On the role of the plasma composition in the magnetic field evolution in plasma opening switches.
      IEEE Trans. Plasma Sci. 32, 1805 (2004).
    68. A. Fruchtman, G Makrinich, and J Ashkenazy
      Two-dimensional equilibrium of a low temperature magnetized plasma.
      Plasma Sources Sci. Technol. 14, 152 (2005).
    69. A. Fruchtman, G. Makrinich, P. Chabert, and J. M. Rax
      Enhanced plasma transport due to neutral depletion.
      Phys. Rev. Lett. 95, 115002 (2005).
    70. A. Fruchtman
      Electric field in a double layer and the imparted momentum.
      Phys. Rev. Lett. 96, 065002 (2006).
    71. A. Fruchtman and A. Cohen-Zur
      Plasma lens and plume divergence in the Hall thruster.
      Appl. Phys. Lett. 89, 111501 (2006).
    72. G. Makrinich and A. Fruchtman
      Heat flux measurements and plasma composition.
      J. Appl. Phys. 100, 093302 (2006).
    73. J.-L. Raimbault, L. Liard, J.-M. Rax, P. Chabert, A. Fruchtman, and G. Makrinich
      Steady-state isothermal bounded plasma with neutral dynamics.
      Phys. Plasmas 14, 013503 (2007).
    74. H. R. Strauss, R. Doron, R. Arad, B. Rubinstein, Y. Maron, and A. Fruchtman
      Magnetic field propagation in a two ion species planar plasma opening switch.
      Phys. Plasmas 14, 053504 (2007).
    75. K. Tsigutkin, R. Doron, E. Stambulchik, V. Bernshtam, Y. Maron, A. Fruchtman, and R. J. Commisso
      Electric fields in plasmas under pulsed currents.
      Phy. Rev. E 76, 046401 (2007).
    76. A. Fruchtman
      Neutral depletion in a collisionless plasma.
      IEEE Trans. Plasma Sci. 36, 403 (2008).
    77. A. Fruchtman
      Energizing and depletion of neutrals by a collisional plasma.
      Plasma Sources Sci. Technol. 17, 024016 (2008).
    78. A. Fruchtman, G. Makrinich, and J. Ashkenazy
      Reply to Comment on ‘Two-dimensional equilibrium of a low temperature magnetized plasma’.
      Plasma Sources Sci. Technol. 17, 028002 (2008).
    79. A. Fruchtman, G. Makrinich, J.-L. Raimbault, L. Liard, J.-M. Rax, and P. Chabert
      Neutral depletion versus repletion due to ionization.
      Phys. Plasmas 15, 057102 (2008).
    80. A. Cohen-Zur, A. Fruchtman, and A. Gany
      The effect of pressure on the plume divergence in the Hall thruster.
      IEEE Trans. Plasma Sci. 36, 2069 (2008).
    81. A. Fruchtman
      Ambipolar and nonambipolar cross-field diffusions.
      Plasma Sources Sci. Technol. 18, 025033 (2009).
    82. G. Makrinich and A. Fruchtman
      Experimental study of a radial plasma source.
      Phys. Plasmas 16, 043507 (2009).
    83. G. Makrinich and A. Fruchtman
      Enhancement of electric force by ion-neutral collisions.
      Appl. Phys. Lett. 95, 181504 (2009).
    84. A. Fruchtman
      Nonmonotonic plasma density profile due to neutral-gas depletion.
      Phys. Plasmas 17, 023502 (2010).
    85. A. Fruchtman and J.-M. Rax
      Neutral-gas depletion and repletion in plasmas.
      Phys. Plasmas 17, 043502 (2010).
    86. A. Fruchtman
      The thrust of a collisional plasma source.
      IEEE Trans. Plasma Sci. 39, 530 (2011).
    87. A. Fruchtman, D. Zoler, and G. Makrinich
      Potential of an emissive cylindrical probe in a plasma.
      Phys. Rev. E 84, 025402(R) (2011).
    88. N. J. Fisch, Y. Raitses, and A. Fruchtman
      Ion acceleration in supersonically rotating magnetized-electron plasma.
      Plasma Phys. Control. Fusion 53, 124038 (2011).
    89. A. Fruchtman, K. Takahashi, C. Charles, and R. W. Boswell
      A magnetic nozzle calculation of the force on a plasma.
      Phys. Plasmas 19, 033507 (2012).
    90. A. Lifshitz, I. Be’ery, A. Fisher, A. Ron, and A. Fruchtman
      Active feedback stabilization of the flute instability in a mirror machine using field-aligned coils.
      Nucl. Fusion 52, 123008 (2012).
    91. G. Makrinich and A. Fruchtman
      Enhanced momentum delivery by electric force to ions due to collisions of ions with neutrals.
      Phys. Plasmas 20, 043509 (2013).
    92. I. Be’ery, O. Seemann, A. Fruchtman, A. Fisher, and J. Nemirovsky
      Measuring drift velocity and electric field in mirror machine by fast photography.
      J. of Instrumentation 8, p02005 (2013).
    93. A. Fruchtman, R. Gueroult, and N. J. Fisch
      Rigid-body rotation of an electron cloud in divergent magnetic fields.
      Phys. Plasmas 20, 073502 (2013).
    94. R. Gueroult, A. Fruchtman, and N. J. Fisch
      Tendency of a rotating electron plasma to approach the Brillouin limit.
      Phys. Plasmas 20, 073505 (2013).
    95. G. Makrinich and A. Fruchtman
      The force exerted by a fireball.
      Phys. Plasmas 21, 023505 (2014).
    96. A. Fruchtman
      Enhanced thrust due to ion–neutral collisions for electric propulsion.
      Plasma Chem. Plasma Process. 34, 647 (2014).
    97. J.-M. Rax, A. Fruchtman, R. Gueroult, and N. J. Fisch
      Breakdown of the Brillouin limit and classical fluxes in rotating collisional plasmas.
      Phys. Plasmas 22, 092101 (2015).
    98. B. Rubinstein, R. Doron, Y. Maron, A. Fruchtman, and T. A. Mehlhorn
      The structure of a magnetic-field front propagating non-diffusively in low-resistivity multi-species plasma.
      Phys. Plasmas 23, 040703 (2016).
    99. Shunjiro Shinohara, Daisuke Kuwahara, Kazuki Yano, and Amnon Fruchtman
      Suppression of diamagnetism by neutrals pressure in partially ionized, high-beta plasma.
      Phys. Plasmas 23, 122108 (2016).
    100. R. Doron, B. Rubinstein, J. Citrin, R. Arad, Y. Maron, A. Fruchtman, H. R. Strauss, and T. A. Mehlhorn
      Electron density evolution during a fast, non-diffusive propagation of a magnetic field in a multi-ion-species plasma.
      Phys. Plasmas 23, 122126 (2016).
    101. A. Fruchtman
      Fast magnetic field penetration into low resistivity plasma.
      J. Plasma phys. 83, 595830104 (2017).