Selected papers

V. E. Levit, E. Mandrescu,
Independence polynomials of well-covered graphs: Generic counterexamples for the unimodality conjecture
European Journal of Combinatorics 27, 2006 (931-939)

V. E. Levit, E. Mandrescu

V.E. Levit, E. Mandrescu
Independence polynomials and the unimodality conjecture for very well-covered, quasi-regularizable, and perfect graphs, Graph Theory – Trends in Mathematics, 2006 (243-254), Birkhauser Verlag Basel/Switzerland

V. E. Levit, E. Mandrescu
A family of graphs whose independence polynomials are both palindromic and unimodal
Carpathian J. of Mathematics 23(1-2), 2007 (108-116)

28. V.E. Levit, E. Mandrescu
Matrices and α-stable bipartite graphs,
J. of Universal Computer Science 13(11), 2007 (1692-1706)

V. E. Levit, E. Mandrescu,
Triangle-free graphs with uniquely restricted maximum matchings and their corresponding greedoids, Discrete Applied Mathematics, 155, 2007 (2414-2425)

V. E. Levit, E. Mandrescu
On the roots of independence polynomials of almost all very well-covered graphs
Special issue honoring P. Hammer, Discrete Applied Mathematics 156, 2008 (478-491)

V.E. Levit, E. Mandrescu
The intersection of all maximum stable sets of a tree and its pendant vertices
Discrete Mathematics 308, 2008 (5809–5814)

V. E. Levit, E. Mandrescu
Graph operations and partial unimodality of independence polynomials
Congressus Numerantium 190, 2008 (21-31)

V.E. Levit, E. Mandrescu
Greedoids on vertex sets of unicycle graphs
Congressus Numerantium 197, 2009 (183-191)

E. Mandrescu
Building graphs whose independence polynomials have only real roots
Graphs and Combinatorics, 25, 2009 (545-556)

V.E. Levit, E. Mandrescu
Graph operations that are good for greedoids
Discrete Applied Mathematics, 158, 2010 (1418-1423)

V.E. Levit, E. Mandrescu
A simple proof of an inequality connecting the alternating number of independent sets and the decycling number
Discrete Mathematics, 311, 2011 (1204-1206)

E. Mandrescu, I. Mirica
Forests whose independence polynomials are palindromic and have only real roots
Journal of Advanced Mathematical Studies 4(2), 2011 (41-50)
V.E. Levit, E. Mandrescu
On symmetry of independence polynomials, Symmetry, 3, 2011 (472-486)

V.E. Levit, E. Mandrescu
Very well-covered graphs of girth at least four and local maximum stable set greedoids
Discrete Mathematics, Algorithms and Applications 3(2), 2011 (245-252)

V.E. Levit, E. Mandrescu
Critical independent sets and König-Egerváry graphs
Graphs and Combinatorics 28, 2012 (243-250)

V.E. Levit, E. Mandrescu
The cyclomatic number of a graph and its independence polynomial at -1
Graphs and Combinatorics 29, 2013 (259-273)

V.E. Levit, E. Mandrescu
On local maximum stable set greedoids, Discrete Mathematics, 31, 2012 (588-596)

V.E. Levit, E. Mandrescu
Vertices belonging to all critical sets of a graph
Siam Journal on Discrete Math (SIDMA), 26(1), 2012 (399-403)

V.E. Levit, E. Mandrescu
On the core of a unicyclic graph, ARS Mathematica Contemporanea 5, 2012 (321-327)

V.E. Levit, E. Mandrescu
Local maximum stable sets greedoids stemming from very well-covered graphs
Discrete Applied Mathematics 160, 2012 (1864-1871)

E. Mandrescu
Unimodality of some independence polynomials via their palindromicity
Australasian Journal of Combinatorics, 53, 2012 (77-82)

V.E. Levit, E. Mandrescu
When is G^2 a König-Egerváry graph?, Graphs and Combinatorics 2012
[published online: DOI 10.1007/s00373-012-1196-5, 8 June 2012]

V.E. Levit, E. Mandrescu
On unicyclic graphs with uniquely restricted maximum matchings
Graphs and Combinatorics 2012
[published online: DOI 10.1007/s00373-012-1230-7, 12 October 2012]

V.E. Levit, E. Mandrescu
On the structure of the minimum critical independent set of a graph
Discrete Mathematics, 313, 2013 (605-610)

V.E. Levit, E. Mandrescu
On maximum matchings in König-Egerváry graphs
Discrete Applied Mathematics 161, 2013 (1635-1638)

V.E. Levit, E. Mandrescu
On maximum matchings in König-Egerváry graphs

V.E. Levit, E. Mandrescu
On the intersection of all critical sets of a unicyclic graph
Discrete Applied Mathematics 162 (2014) 409–414