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Introduction

0.1 Prelab Exercise

• 1. Define the terms: Relative permittivity, dielectric loss tangent
(tan δ), skin depth and distributed elements.

2. Refer to Figure 1, find the frequency that will cause a 2π radians phase
difference between the two RG-58 coaxial cables, assume µR = 1, εr = 2.3.

a. Find the relative amplitude of the two signals.
b. Verify your answers in the laboratory.

0.7m RG-58

3.4m RG-58

OscilloscopeSignal generator

515.000,00 MHz

Figure 1 -Phase difference between two coaxial cables.

0.2 Background Theory

Transmission lines provide one media of transmitting electrical energy be-
tween the power source to the load. Figure 2 shows three different geometry
types of lines used at microwave frequencies.
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Rectangular metal
 waveguide

Microstrip
Line

Two paralel
 wire line

Coaxial cable

Figure 2 - Popular transmission lines.

The open two-wire line is the most popular at lower frequencies, especially
for TV application. Modern RF and microwave devices practice involves
considerable usage of coaxial cables at frequencies from about 10 MHz up to
30 GHz and hollow waveguides from 1 to 300 GHz.

A uniform transmission line can be defined as a line with distributed
elements, as shown in Figure 3.

R’ = Series resistance per unit length of line (Ω/m).

Resistance is related to the dimensions and conductivity of the metallic
conductors, resistance is depended on frequency due to skin effect.

G’ = Shunt conductance per unit length of line (�/m).

G’ is related to the loss tangent of the dielectric material between the two
conductors. It is important to remember that G’ is not a reciprocal of R’.
They are independent quantities, R’ being related to the various properties
of the two conductors while G’ is related to the properties of the insulating
material between them.
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ZG

Equivalent circuit of transmission line

First section Second section Third-section

CC CG G G

R/2 L/2 R/2L/2

z=0

Figure 3 -Transmission lines model

L ’ = Series inductance per unit length of line (H/m).
L’- Is associated with the magnetic flux between the conductors.
C’ = Shunt capacitance per unit length of line (F/m).
C’- Is associated with the charge on the conductors.
Naturally, a relatively long piece of line would contain identical sections as

shown. Since these sections can always be chosen to be small as compared to
the operating wavelength. Hence the idea is valid at all frequencies. The se-
ries impedance and the shunt admittance per unit length of the transmission
line are given by:

Z = R′ + JωL′

Y = G′ + JωC ′

The expressions for voltage and current per unit length are given respectively
by equations (1) and (2):

dV (z)

dz
= −I(z)(R′ + JωL′) (1)

dI(z)

dz
= −V (z)(G′ + JωC ′) (2)

Where the negative sign indicates on a decrease in voltage and current as z
increases. The current and voltage are measured from the receiving end; at
z = 0 and line extends in negative z-direction. The differentiating equations,
(3) and (4), associate the voltage and current:
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d2V (z)

dz
= −(R′ + JωL′)

dI(z)

dz
= (G′ + JωC ′)(R′ + JωL′)V (z) = γ2V (z)(3)

d2I(z)

dz
= −(G′ + JωC)

dV (z)

dz
= (G′ + JωC ′)(R′ + JωL′)I(z) = γ2I(z)(4)

Where

γ =
√

ZY =
√

(G′ + jωC ′)(R′ + jωL′) (5)

The above equations are known as wave equations for voltage and current,
respectively, propagating on a line. The solutions of voltage and current
waves are:

V (z) = V1e
−γz + V2e

+γz (6)

I(z) = I1e
−γz + I2e

+γz

These solutions are shown as the sum of two waves; the first term ,V1, in-
dicates the wave traveling in positive z-direction, and is called the incident
wave, while the second term, V2, indicates the wave traveling in the negative
z-direction, and is called the reflected wave. γ is a complex number that is
called the propagation constant and can be defined as:

γ = α + jβ (7)

α is called the attenuation constant of the propagating wave, α is the real part
of Eq. (2.7) while β is the imaginary part and is called the phase constant.
Thus, propagation constant γ is the phase shift and attenuation per unit
length along the line. Separating equation (2.5) into real and imaginary
parts, we can get:

α =

[√
(G′2 + ω2C2)(R′2 + ω2L′2) + (R′G′ − ω2L′C ′)

2

] 1

2

(8)

β =

[√
(G′2 + ω2C ′2)(R′2 + ω2L′2) − (R′G′ − ω2L′C ′)

2

] 1

2

(9)

α is measured in nepers per unit length of the transmission line (1 neper
= 8.686dB). β is measured in radians per unit length of tthe transmission
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line. That means that β can be calculated as:

β =
2π

λ
(10)

Where λ is the wavelength or distance along the line corresponding to a phase
change of 2π radians. If the wavelength in free space is denoted by λ0, then:

λ0 =
c

f0
=

vp
√

εRµR

f
= λ

√
εRµR (11)

Where c is the velocity of light in free space and vp is the velocity of electric
wave in a dielectric material.

0.2.1 Characteristic Impedance

If RF voltage V is applied across the conductors of an infinite line, it causes a
current I to flow. By this observation, the line is equivalent to an impedance,
which is known as the characteristic impedance, Z0:

Z0 =
V (z)

I(z)

The expression for current I, using Eqs. (2.1) and (2.6), is given by:

I = − 1

(R′ + JωL′)

∂V

∂z
= − 1

(R′ + JωL′)
(−γ)(V1e

−γz + V2e
+γz)

I(z) = I1e
−γz + I2e

+γz

Where

I1 =
V1

(R′ + JωL′)
(γ) and I2 =

V2
(R′ + JωL′)

(γ)

Infinite line has no reflection, therefore I2 = V2 = 0 and:

V (z)

I(z)
=

V1
I1

=
(R′ + JωL′)

√
(R′ + JωL′)(G′ + JωC ′)

Thus the characteristic impedance of infinite line can be calculated by (12):

Z0 =
V (z)

I(z)
=

√
(R′ + JωL′)

(G′ + JωC ′)
(12)
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Line Impedance

We can rewrite the current and voltange along the line as:

V (z) = V1e
−γz + V2e

+γz (13)

I(z) =
V1
Z0

e−γz +
V2
Z0

e+γz

and the line impedance (the impedance at point z) as:

Z(z) =
V (z)

I(z)
=

Z0 (V1e−γz + V2e+γz)

V1e−γz − V2e+γz
(14)

0.2.2 Terminated Lossless Line

Consider a lossles line, length l, terminated with a load ZL, as shown in
Figure 4.

I
L

VL

I(z)

V(z)

l
0=z

lz −=

Z l

Figure 4 - A transmission line, terminated with a load.

Using equation (2.13) and recalling that α = 0, one can define the current
and voltage on the load terminal (at z = 0) as:

VL

IL
= ZL (15)

V (z = 0) = V1e
−jβ(0) + V2e

jβ(0) = V1 + V2 (16)

I(z = 0) =
V1
Z0

e−jβ(0) − V2
Z0

ejβ(0) =
V1
Z0

+
V2
Z0
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We can also add the boundary conditions:

V (z = 0) = VL (17)

I(z = 0) = IL

Using equation (2.16) we can rewrite (2.15) as equation (2.18):

ZL =
VL

IL
=

V (z = 0)

I(z = 0)
=

V1 + V2
V1
Z0

+ V2
Z0

(18)

Rearranging equation (2.18) one can rewrite:

V2
V1

=
ZL − Z0
ZL + Z0

� Γ

Where Γ is the complex reflection coefficient. It relates to the magnitude and
phase of the reflected wave (V2) emerging from the load and to the magtitude
and phase of the incident wave (V1) , or

V2 = ΓV1 (19)

Equation (2.13) can be rewrite as:

V (z) = V1e
−jβz + ΓV1e

jβz (20)

I(z) =
V1
Z0

e−jβz − Γ
V1
Z0

ejβz

The reflection coefficient at an arbitrary point along the transmission line is:

Γ(z) =
V2e

−jβz

V1e−jβz
= Γ(0)e−2jβz

While the time average power flow along the line at point z is:

Pav =
1

2
Re[V (z)I(z)∗] (21)

=
1

2

V 2
1

Z0
Re
(
1− Γ∗e−j2βz + Γej2βz − |Γ|2

)

When recalling that Z − Z∗ = 2j ImZ, equation (2.21) can be simplified to:

Pav =
1

2

V 2
1

Z0

(
1− |Γ|2

)
(22)

Which shows that the average power flow is constant at any point on the
lossless transmission line. If Γ = 0 (perfect match), the maximum power is
delievered to the load, while all the power is reflected for Γ = 1.
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0.2.3 The Impedance Transformation

According to the transmission line theory, in a short circuit line, the im-
pedance become infinite at a distance of one-quarter wavelength from the
short. The ability to change the impedance by adding a length of transmis-
sion line is a very important attribute to every RF or microwave designer.
If we look at the transmission line (losseless line), as illustrated in Figure 5,
and use equation (2.20), the line impedance at z = −l (input impedance)
is:

Zin =
V (z = −l)

I(z = −l)
= Z0

(
ejβl + Γe−jβl

ejβl − Γe−jβl

)
(23)

ZG

ZL

Z
0

l

β

0=zlz −=

inZ

)(zI

LI

LV

Figure 5 -Transmission line terminated in arbitrary impedance ZL.

If we use the relationship Γ = (ZL − Z0) / (ZL + Z0) with equation (2.23) we
get:

Zin = Z0

(
ZL

(
ejβl + e−jβl

)
+ Z0

(
ejβl − e−jβl

)

ZL (ejβl + Γe−jβl)− Z0 (ejβl − e−jβl)

)

(24)

By recalling Euler’s equations:

ejβl = cosβl + j sinβl

e−jβl = cosβl− j sin βl

We can get:

Zin = Z0

(
ZL cosβl + jZ0 sin βl

Z0 cos βl + jZL sin βl

)

Or:

Zin = Z0

(
ZL + jZ0 tanβl

Z0 + jZL tanβl

)
(25)

Lets examine special cases:



0.3 SHORTED TRANSMISSION LINE 9

0.3 Shorted Transmission Line

The voltage and current along a transmission line as a function of time is
known as:

V (z, t) = A cos

[
ω

(
t− z

vp

)
+ θ

]
+ B cos

[
ω

(
t +

z

vp

)
+ φ

]
(26)

I(z, t) =
1

Z0

{
A cos

[
ω

(
t− z

vp

)
+ θ

]
−B cos

[
ω

(
t +

z

vp

)
+ φ

]}

Where z = 0, at the generator side, and d = 0 at the load side, as shown in
Figure 6.

 

z=0
z

z=d

V

z

I(z)

β,
0

Z

Figure 6 -Shorted transmission line.

This expression can be rewrite in phasor form as:

V (z) = V1e
−jβz + V2e

jβz (27)

I(z) =
1

Z0

(
V1e

−jβz − V2e
jβz
)

Where V1 = Aejθ is the forward wave, V2 = Bejϕ is the reflected wave and
β = ω/vp.The boundary condition for the short circuit transmission line at
z = 0 is that the voltage across the short circuit is zero:

V (0) = 0 (28)

Using equations (27) and (28), we obtain:
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V (0) = V1e
jβ0 + V2e

−jβ0 = 0 (29)

V1 = −V2

Inserting Eq (29) into Eq (28), we get:

V (z) = V1e
jβz − V1e

−jβz = 2jV1 sinβz (30)

I(z) =
1

Z0

(
V1e

jβz + V1e
−jβz

)
= 2

V1
Z0

cos βz

Which shows that the V = 0 at the load end, while the current is a maximum
there. The ratio between V(z) and I(z) is the input impedance and is equal
to:

Zin = jZ0 tanβz (31)

Which is purely imaginary for any length of z. The value of Zin(sc) vary
between +j∞ to −j∞, every π/2 (λ/4),by changing z, the length of the
line, or by changing the frequency. The voltage and current as a function of
time and distance are:

V (z, t) = Re
[
V (z)ejωt

]
(32)

= Re
(
2ejπ/2 |V1| ejθejωt sinβz

)

= −2 |V1| sinβz sin (ωt + θ)

I(z, t) = Re
[
I(z)ejωt

]
(33)

= Re

(
2

V1
Z0

cosβzejωt
)

= |V1|
2

Z0
cosβz cos (θ + ωt)

Where V1 = |V1| ejθ and j = ejπ/2.



0.3 SHORTED TRANSMISSION LINE 11

 

Figure 7 -Voltage along a shorted transmission line, as a function of time
and distance from the load. Frequency 1GHz.

The result of the voltage on the shorted transmission line is shown in
figure 7, assume that V1 = sin 2π109t (λ = 30cm) , which shows that :

• The line voltage is zero for βz = 0 + nπ n = 0, 1, 2...for all value of
time.

• The voltage at every point of z is sinusoidal as a function of time. The
maximum absolute value of the voltage is known as a standing wave
pattern.

 

(λ)Wavelengths0 21

Frequency  difference

Im
p
e
d

a
n
c
e

m
a
g

n
it
u
d

e

Figure 8 - Input impedance of shorted low loss coaxial cable.
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0.3.1 Open Circuit Line-

For lossless line α �= 0 and YL = 0, equation (2.25) is reduce to:

Yin = Y0 tanβz

or in impedance form:

Zin(os) =
Z0

tanβz
(34)

Using Eqs. (2.24), (2.34) and (2.35), Z0 can be computed from the short and
open circuit, by the relation:

Z0 =
√

Zin(sc)Zin(os)

0.3.2 Low Loss Line

In many cases, the loss of microwave transmission lines is small. In these
cases, some approximation can be made that simplify the expression of prop-
agation constant γ and characteristic impedance Z0.Equation (5) can be re-
arranged as:

γ =

√

(jωC ′jωL′)(1 +
R′

jωL′
)

(
1 +

G′

jωC ′

)
(35)

= jω
√

L′C ′

√

1− j

(
R′

ωL′
+

G′

ωC ′

)
− R′G′

ω2L′C ′

If we assume that R′ << ωL′ and G′ << ωC ′ for low loss line, than R′G′ <<
ω2L′C ′, therefore Eq. (36) is reduced to:

γ = jω
√

L′C ′

√

1− j

(
R′

ωL′
+

G′

ωC ′

)
(36)

By using Taylor approximation
√
1 + x ≈ 1 + x

2
, the propagation constant

can be approximated by:

γ ≈ jω
√

L′C ′

[
1− j

2

(
R′

ωL′
+

G′

ωC ′

)]
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so Re γ = α− is the attenuation constant and Im γ = β−phase constant,
therefore:

α ≈
1

2

(

R′

√
C ′

L′
+ G′

√
L′

C ′

)

(37)

=
1

2

(
R′

Z0
+ G′Z0

)
= αc + αd

Where αc is the conductor loss and αd is the dielectric loss. The phase
constant is equal to:

β ≈ ω
√

L′C ′ (38)

Where Z0 =
√

L′

C′
.

Note that the characteristic impedance of a low loss transmission line can
be approximated by:

Z0 =

√
(R′ + JωL′)

(G′ + JωC ′)
≈

√
L′

C ′

0.4 Calculating Transmission Line parameters

by Measuring Z0, α, and β

By knowing the primary parameters Z0, α,and β, the equivalent parameters
R, L, C and G can be extracted by multiplying the general expressions of Z0
and γ :

R′ + jωL′ = Z0γ

= (R0 + jx0)(α + jβ)

= (R0α − x0β) + j(R0β + x0α) (39)

Where R0 is the real part of Z0 and x0 is its imaginary part. By Equating
the real and imaginary part we get:

R′ = R0α − x0β
Ω

m
(40)

and:

L′ =
R0β + x0α

ω

H

m
(41)
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By dividing the general expressions of Z0 and γ,we get

G′ + JωC ′

=
γ

Z0
(42)

=
α + jβ

R0 + jx0
∗ R0 − jx0

R0 − jx0

=
R0α + x0β

R2
0 + x20

+ j
R0β − x0α

R2
0 + x20

(43)

By equating real and imaginary parts, we get:

G′ =
R0α + x0β

R2
0 + x20

(44)

and:

C ′ =
R0β − x0α

(R2
0 + x20)ω

(45)

0.4.1 Calculating Coaxial Line Parameters by Mea-

suring Physical Dimensions

Referring to Figure 9, if the center conductor is charged to +q and the outer
conductor (shielding) is charged to−q, than the electric field lines will directe
radially outward, while the magnetic lines will surround the inner conductor.

 
l

b

a

z=lz=0

Dielectric
material

E field lines

magnetic field lines

Figure 9 - Geometry and elemagnetic fields lines of coaxial cable.

By applying Gauss law to a cylindrical structure like a coaxial cable of length
l and radius r, where a < r > b:

∫ l

0

∫ 2π

0

Drdφdz = q
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D is independent of z and φ therefore:

D =
q

2πrl
and E =

q

2πε0εrrl

The voltage difference between the conductors:

V = −
∫ b

a

E.dr =
q

2πε0εrl
ln

b

a

Hence:

C =
q

V
=

2πε0εrl

ln b
a

(46)

All dielectric materials have lossy at microwave frequencies. Hence one can
look at a coaxial cable as a capacitor with parallel conductance or

Y = G + jωC = jωC(1− j
G

ωC
)

The quantity j G
ωC

called material loss tangent and assign as tan δ. This
quantity indicates the relative magnitude of the loss component. It is often
used to specify the loss properties of dielectrics:

G = jωCtanδ =
2πε0εrl

ln b
a

ωtanδ (47)

Inductance of Transmission line

The inductance of solenoid known as

L =
NΦ

I
(48)

 

N turns

l

φFlux

Area- A

r

Current I

Figure 10 -Inductance of solenoid.
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where N is the number of turns, l is the length and I is the current in the
solenoid. Applying ampere law to a circle radius r (b < r > a) around any
turn of the solenoid will result in:

H = I
2πr

 

I

r

π r2

I
H=

H

Magnetic field arround
current carrying conductor

Magnetic flux between the
conductor

Figure 11 -Magnetic field around conductor and solenoid.

If one wants to measure the total flux between the conductors, it’s the flux
enter the turn shown in Figure10 and Figure11. Therefore

Φ =

∫ l

0

∫ b

a

Bdrdz = µ0µrl

∫ b

a

I

2πr
dr =

µ0µRlI

2π
ln

b

a

Coaxial cable could be considered as a solenoid with one turn. By using
equation 1.50, the expression for Φ and N=1 becomes:

L =
µ0µRl

2π
ln

b

a
(49)

Resistance of Transmission Line

The high frequency resistance of a coaxial cable is equal to the D.C.
resistance of a equivalent coaxial cable composed of two hollow conductors
with the radii, a and b, respectively, and with thickness equal to the skin
depth penetration δ. Skin depth penetration is defined as

δskin =
1

√
πfµ0µRσ

meters

Where σ is the conductivity of the conductor. Therefore the resistance
per unit length is:

R′ =
1

2πaδskinσ
+

1

2πbδskinσ
=

b + a

2πaδskinσb
(50)



Experiment Procedure

0.5 Required Equipment

1. Network Analyzer HP − 8714B.
2. Arbitrary Waveform Generators (AWG)HP − 33120A.
3. Agilent ADS software.
4. Termination-50Ω .
5. Standard 50Ω coaxial cable .
6. Open Short termination.
7. SMA short termination.
8. 50 cm 50Ω FR4 microstrip line

0.6 Phase Difference of Coaxial Cables, Sim-

ulation and Measurement

In this part of the experiment you will verify your answers to the prelab
exercise.

0.7m RG-58

3.4m RG-58

OscilloscopeSignal generator

515.000,00 MHz

Figure 1 - Phase difference between two coaxial cables

17
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1. Simulate the system as indicated in Figure 2 (see also Figure 1).

S_Param

SP1

Step=1.0 MHz
Stop=100 MHz

Start=1.0 MHz

S-PARAMETERS

COAX
TL2

Rho=1

TanD=0.0004
Er=2.29

L=700 mm

Do=2.95 mm
Di=0.9 mm

COAX

TL1

Rho=1
TanD=0.0004

Er=2.29
L=3400 mm

Do=2.95 mm

Di=0.9 mm

Term

Term3

Z=50 Ohm

Num=3

Term

Term2

Z=50 Ohm

Num=2

PwrSplit2

PWR1

S31=0.707

S21=0.707
P_AC
PORT1

Freq=freq

Pac=polar(dbmtow(0),0)
Z=50 Ohm

Num=1

Figure 2 - Phase Difference Simulation.

2. Plot S21 (phase) and S31 (phase) on the same graph, find the frequency
where the phases of the two cables are equal. Save the data.

Compare this frequency to the frequency you calculated in the prelab
exercise.

3. Connect coaxial cables to a oscilloscope using power splitter, as indi-
cated in Figure 1.

4. Set the signal generator to the frequency according to your simulation,
and verify that the phase difference is near 0 degree. Save the data on
magnetic media.

0.7 Wavelength of Electromagnetic Wave in

Dielectric Material

1. Select a 50 cm length FR4 microstrip line, Width = 3mm, Height =
1.6mm, εr = 4.6, Z0 = 50Ω, , vp = 0.539c, εeff = 3.446.



0.7WAVELENGTHOF ELECTROMAGNETICWAVE INDIELECTRICMATERIAL

microstrip length 50cm

Figure 3 - 50 cm short circuit microstrip line.

2. Calculate the frequency that half the wavelength in the dielectric
material is equal to 50 cm (λ/2 = 50cm). Record this frequency.

Verify your answer using ADS: Menu -> Tools -> LineCalc.
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Figure 4 - Simulation of short sircuit microstrip transmission line.
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3. Simulate a short circuit λ/2 microstrip line according to Figure 4.

Draw a graph of the current as a function of time.

Explain the graph.

Find the distance where the current amplitude is minimum all the time.

Find the time where the current amplitude is minimum at every point on
the microstrip line. Save the data.

4. Find the position where the current amplitude is maximum and change
the simulation accordingly.

Draw a graph of the current as a function of time to prove your answer.
Save the data.

5. Find the position where the current amplitude is minimum. Draw a
graph of the current as a function of time to prove your answer. Save the
data.

6. Connect the short circuit microstrip line to a signal generator, adjust
the frequency to the calculated frequency and the amplitude to 0 dBm.

7. Measure the amplitude of the signal, using wideband oscilloscope at
load end and signal generator end, why the amplitude of the signal at both
ends is close to 0 volt.

8. Measure the voltage along the line using the probe of the oscilloscope,
verify that the voltage is maximum at the middle of the line.

9. Calculate the frequency for λ = 50 cm in the dielectric material.
Measure the voltage along the line, how many points of maximum voltage
exist along the line?

0.8 Input Impedance of Short - Circuit Trans-

mission Line

1. Simulate a transmission line terminated by a short circuit, as shown in
Figure 5.
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Figure 5 - Input impedance of a short circuit coaxial transmission line.

2. Draw a graph of Zin as a function of length x, save the data.

3. If you use fix length of transmission line, which parameter of the
simulation you have to change in order to get the same variation of Zin,
prove your answer by simulation.

4. Connect line stretcher terminated in a short circuit to a network ana-
lyzer (see Figure 6).
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Figure 6 - Input impedance measurment of short circuit coaxial
transmission line.

5. Calculate the frequency for the wavelength 1.5λ = 70cm (line stretcher
at minimum overall length).

6. Set the network analyzer to smith chart format and find the exact
frequency (around the calculated frequency) for the input impedance Zin =
0.(line stretcher at minimum overall length), set the network analyzer to CW
frequency equal to this measured frequency.

7. Stretch the line and analyze the impedance in a smith chart.

0.9 Impedance Along a Short - Circuit Mi-

crostrip Transmission Line

1. Simulate a short circuit transmission line (see Figure 7) with length 50cm,
width 3mm, height 1.6 mm and dielectric material FR4 εeff = 3.446.
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Figure 7 - Simulation of a short and open circuit microstrip transmission
lines.

Pay attention that the simulation is parametric (x is the distance para-
meter).

Verify thet for x �= λ/2 the input impedance is a superposition of a short
and an open circuit transmission line connected in parallel and explain why
is this so.

2. Draw a graph of the input impedance as a function of the distance x.
Save the data.

3. Connect the microstrip to the network analyzer (as shown in Figure
8), set the network analyzer to impedance magnitude measurement.
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Figure 8 - Measurement of input impedance of short circuit microstrip
transmission line

4. Set the network analyzer to Continuos Wave (CW), at the calculated
frequency for λ/2 = 50cm.Calibrate the network analyzer to 1 port (reflec-
tion) at the end of the cable.

4. What is the expected value of the impedance at each point?
Measure the impedance magnitude at λ/2, 3λ/8, λ/4, λ/8, 0. Save the

data on magnetic media.

0.10 Final Report

1. Attach and explain all the simulation graphs.
2. Using MATLAB, draw a 3D graph of the current as a function of

time and distance of a short circuit microstrip line for a frequency of 1GHz
(similar to Figure 7 from chapter 1). Choose the ranges of time and distance
as you wish and attach the matlab code.

3. Using MATLAB, draw a graph of the input impedance, Z0, as a
function of the length, x, for a lossless short circuit coaxial line for a frequency
of 161 MHz. Compare this graph to your measurement and ADS simulation.
Attach the matlab code.

4. Using the physical dimension of a coaxial cable RG-58 that you mea-
sured, find the following parameters versus frequency (if apply) and draw a
graph of:

a. Shunt capacitance C per meter.
b. Series inductance L per meter.
c. Series resistance R per meter.
d. Shunt conductance G per meter.
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0.11 Appendix-1 - Engineering Information

for RF Coaxial Cable RG-58

Component Construction details

Nineteen strands of tinned copper wire.

Inner conductor each strand 0.18 mm diameter

Overall diameter: 0.9 mm.

Dielectric core Type A-1: Solid polyethylene.

Diameter: 2.95 mm

Outer conductor Single screened of tinned cooper wire.

Diameter: 3.6 mm .

Jacket Type lla: PVC.

Diameter: 4.95mm.

Engineering Information:

Impedance: 50Ω

Continuous working voltage; 1,400 V RMS, maximum.

Operating frequency: 1 GHz, maximum.

Velocity of propagation: 66% of speed light.

Dielectric constant of polyethylene: 2.29

Dielectric loss tangents of polyethylene: tan δ = 0.0004

Operating temperature range: -40 C to +85 C.

Capacitance: 101 pF
m

.
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Attenuation of 100m Rg.-58 coaxial cable
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Figure 9 - Attenuation versus frequency of a coaxial cable RG-58.


